$$
\begin{aligned}
& \text { THE } \\
& \text { BIRTDAY } \\
& \text { PARADOK }
\end{aligned}
$$

Presentation by

Ankit Pradhan 16CS01014

IIT Bhubaneswar

The Problem

- Given a set of n randomly chosen people, what is the probability that a pair of these people have the same birthday?
- From Pigeonhole principle, if n is 366 then the probability is 1 (as there are only 365 possible days in a normal year, excluding February 29 of leap year).
- Surprisingly, very high probabilities are obtained for even smaller values of n.

Analysis

- Let the probability that any two birthdays coincide be $p(n)$ and the probability that no two birthdays coincide be $\tilde{p}(n)$.
- $\tilde{p}(n)=0$ for $n>365$ and for $n \leq 365$,

$$
\tilde{p}(n)=\frac{365 \cdot 364 \cdots \cdots(365-n+1)}{365^{n}}=\left(1-\frac{1}{365}\right)\left(1-\frac{2}{365}\right) \ldots\left(1-\frac{n-1}{365}\right)
$$

- Approximating $e^{x} \approx 1+x$, for $x=-\frac{k}{365}$ gives $e^{-\frac{k}{365}} \approx 1-\frac{k}{365}$
- $\tilde{p}(n) \approx e^{-\frac{1}{365}} \cdot e^{-\frac{2}{365}} \cdot \cdots \cdot e^{-\frac{n-1}{365}} \approx e^{-\frac{n(n-1)}{730}}$
- $p(n)=1-\widetilde{p}(n) \approx 1-e^{-\frac{n(n-1)}{730}}$
- For $n=23, p(n) \approx 0.5$, hence only 23 people are necessary to achieve 50% probability of two persons having same birthday.

The Birthday Paradox

Generalized Formulation

- The problem can be generalized as :

Given n random integers drawn from a discrete uniform distribution with range $[\mathbf{1}, d]$, what is the probability $p(n, d)$ that at least two numbers are the same?

- It is easy to see that the required probability is

$$
\begin{aligned}
p(n, d) & = \begin{cases}1-\prod_{k=1}^{n-1}\left(1-\frac{k}{d}\right) & n \leq d \\
1 & n>d\end{cases} \\
& \approx 1-\left(\frac{d-1}{d}\right)^{\frac{n(n-1)}{2}} \\
& \approx 1-e^{-\frac{n(n-1)}{2 d}}
\end{aligned}
$$

Hash Functions

- A hash function is any function that maps data of arbitrary size to data of fixed length.
- Since the input size is variable, more than one input message can have the same hash digest.
- Cryptographic Hash Functions are designed to be non-invertible and provide collision resistance.

Hash Function

Collision Resistance and Birthday Paradox

- A Cryptographic Hash Function H is collision resistant if it is hard to find two distinct inputs $x, y(x \neq y)$ such that $H(x)=$ $H(y)$.
- From the generalized birthday paradox,

$$
p(n, d) \approx 1-e^{-\frac{n(n-1)}{2 d}} \approx 1-e^{-\frac{n^{2}}{2 d}}
$$

- If $n(p, d)$ denotes the number of random integers drawn from $[1, d]$ to obtain a probability p that at least two numbers are same, then

$$
n(p, d) \approx \sqrt{2 d \cdot \ln \left(\frac{1}{1-p}\right)}
$$

- For $p=1 / 2, n \approx \sqrt{2 d \cdot \ln (2)} \approx 1.18 \times d^{1 / 2}$.

Birthday Attack

- Let $H: M \rightarrow\{0,1\}^{n}$ be a hash function with M being the message space and n being the size of hash digest.
- Algorithm to find a collision in time $O\left(2^{n / 2}\right)$ hashes 1. Choose $2^{n / 2}$ distinct random messages in $M: m_{1}, \ldots, m_{2^{n / 2}}$

2. For $i=1, \ldots, 2^{n / 2}$ compute $t_{i}=H\left(m_{i}\right)$
3. Look for a collision $\left(t_{i}=t_{j}\right)$ for $i \neq j$. If not found, goto 1 .

- This comes from the fact that given n distinct numbers r_{1}, \ldots, r_{n} from a sample of size d, probability $P\left[\exists i \neq j: r_{i}=\right.$ $\left.r_{j}\right] \geq \frac{1}{2}$ holds if $n \geq 1.18 \times d^{1 / 2}$.

REFERENCES

- https://en.wikipedia.org/wiki/Birthday problem
- https://en.wikipedia.org/wiki/Collision resistance
- https://en.wikipedia.org/wiki/Cryptographic hash function
- https://www.coursera.org/learn/crypto/lecture/py R4I/generic-birthday-attack

THANK YOU

